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The dynamics of the strong coupling BCS model, considered as an open 
system interacting with a thermal bath, is solved rigorously and explicitly 
in the weak coupling limit and in the infinite-volume limit. The BCS sys- 
tem goes from the normal phase to the ordered phase by bifurcation. 
Fluctuations around trajectories of intensive observables are Gaussian 
and Markovian. Thermodynamic phases are global attractors in the physical 
domain. Structural stability is discussed. The model provides an example 
of a nonequilibrium statistical mechanical system with phase transition 
whose irreversible macroscopic dynamics can be calculated exactly from 
the underlying Hamiltonian quantum mechanics. 
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1. I N T R O D U C T I O N  

Some progress has been made in recent years in establishing a precise link 
between microscopic dynamical laws and the thermodynamics of irreversible 
processes. In appropriate limiting situations, master and transport equations 
can be obtained in a mathematically controlled way from the underlying 
Hamiltonian mechanics. We have, for instance, a derivation of the master 
equation (1,2~ and of a quantum transport equation (3'~ in the weak coupling 
limit (van Hove limit), a treatment of the laser in the singular coupling 
limit, (~,6~ and, for classical systems, the Boltzmann equation in the Grad 
limit (7~ and the Vlasov equation in the mean field limit. (~ In this work, we 
study another example of a dissipative system, the open BCS model, whose 
dynamics originates rigorously from Hamiltonian quantum mechanics in 
the weak coupling limit. (For a simpler system, the open Ising model, see 
Ref. 9 and further developments in Ref. 10). 

1 Laboratoire de Physique Th60rique, Ecole Polytechnique F6d6rale de Lausanne, 
Lausanne, Switzerland. 
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How to formulate a precise microscopic theory without the recourse to 
such limiting procedures is certainly a fundamental problem, which involves 
not only technical, but also conceptual difficulties. However, it is worth to 
explore the weak coupling limit situation thoroughly, for the following 
reason: it provides a microscopic justification for many of the features of 
the thermodynamics of irreversible processes (for a review see Ref. 11). 
Moreover, since there does not exist a general prescription (analogous to the 
Gibbs prescription in the theory of equilibrium) for computing the non- 
equilibrium behavior of macroscopic systems, we have to rely on the 
Liouville-von Neumann equation of motion as a last resort. It is therefore 
of interest to investigate as fully as possible models for which a link without 
mathematical gap can be established with the microscopic mechanics. 

We consider here the strong coupling version of the BCS model as an 
open system coupled with an external agency. This external agency is re- 
sponsible for two basic mechanisms: the creation or destruction of electron 
pairs and the scattering of pairs. The first mechanism, which is not gauge 
invariant, causes a variation of the number of pairs. As a result, the number 
of pairs and the order parameter obey a coupled set of equations of motion. 
The scattering of pairs, which is a gauge-invariant interaction, affects only 
the evolution of the order parameter. We have chosen to treat here the first 
case as being most illustrative and leading to the richest dynamical structure. 
Of course, many variations of the model can be worked out with analogous 
results. 

In Section 2, we give the free dynamics of the BCS model in a closed 
form, which becomes exact in the infinite-volume limit. Although the dy- 
namics of the strong coupling BCS model has been extensively studied, (12-14~ 
to our knowledge this explicit form has not appeared in the literature. A 
solution of this dynamical problem valid in a large class of nonequilibrium 
states is a necessary preliminary to the study of the open system. We specify 
in Section 3 the external system and its interaction with the BCS model: 
it is a quasi-free thermal bath essentially characterized by the KMS relation. 
After a brief review of the framework of the weak coupling limit, we estab- 
lish the equations of motion of the relevant intensive observables in the 
infinite-volume limit. The number of pairs and the gap parameter obey a 
two-dimensional autonomous differential system, it  is interesting to note 
that the simple quadratic nonlinearity of the free BCS Hamiltonian produces 
a highly nonlinear set of equations of motion for the open system. 

Section 4 is devoted to the study of the corresponding flow of intensive 
observables. A global analysis is made possible by the fact that the free 
energy is a Liapunov function of our differential system. It is shown that 
above the critical temperature the normal phase is a global attractor in the 
physical domain. At the critical temperature, there is a bifurcation, the 
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normal phase becoming unstable. Below the critical temperature the super- 
conducting phase becomes an attractor for all initial conditions that do not 
belong to the (unstable) manifold where the gap parameter vanishes. We 
show that the concept of structural stability is relevant in this context2: 
Our dynamical system is structurally stable if its only equilibria are the 
thermodynamic ones. In this sense, the qualitative aspects of trajectories 
are independent of the detailed features of the coupling functions with the 
bath. Structural stability is lost as soon as there exists accidental equilibria 
due to a peculiarity of the coupling with the bath. Finally, we examine how 
the symmetry breaking of gauge invariance occurs dynamically, by the 
study of the complex order parameter. In the case of a non-gauge-invariant 
interaction with the bath, the two-dimensional order parameter undergoes 
a Hopf bifurcation, and it moves asymptotically on an attracting orbit 
constituted by the set of extremal equilibrium states. 

The dynamical description is completed in Section 5 by the study of the 
behavior of fluctuation observables. The main result is that the generator of 
the evolution of the probability distribution for fluctuation observables 
converges in the infinite-volume limit to a Fokker-Planck-type generator. 
The associated Fokker-Planck equation is exactly that which corresponds 
to the process obtained by assuming that fluctuation observables follow the 
linearized equation of motion around classical trajectories with a Markovian 
Gaussian (but not stationary) random force. Regression of fluctuations and 
dynamical instabilities can easily be discussed, owing to our previous 
knowledge of the flow of intensive observables. 

Since the model is solvable and provides the dynamics of the phase 
transition, it is of interest to compare our results with the existing pheno- 
menological dynamical theories of critical phenomena (for a recent review 
see Ref. 15). Although our differential system is not of gradient form, we 
show in Section 6 that in the neighborhood of the critical temperature and 
for small values of the order parameter it reduces to the usual Ginzburg- 
Landau time-dependent theory. Of course no mode-mode coupling occurs 
here, the strong coupling BCS model being strictly mean field. We have 
given the main steps of all calculations, but skipped parts of them that are 
straightforward and lengthy. Some more technical points are relegated to 
appendices. 

The model is treated in a spirit very similar to that of Hepp and Lieb 
in their work on the laser. (5,6~ Every step on the way from microscopic to 
macroscopic dynamics can be stated and discussed without recourse to any 
ad hoc statistical assumption. One difference is that the laser makes its 
phase transition out of equilibrium when the coupling parameters to the 

2 See Ref. 10 for a proof of structural stability in a generalized open Ising-Weiss 
model. 
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reservoirs are varied. Here the bifurcation occurs when the temperature of 
the initial state of the bath is lowered. Taking advantage of the simplicity 
of the singular coupling limit, they work in the framework of Heisenberg 
equations of motion, and are thus led to a Langevin description of random 
forces. We preferably use the theory of master equations, where the KMS 
relation can be more easily exploited in the weak coupling limit, and we end 
with a Fokker-Planck description of fluctuations. One should note in both 
cases the involved limits and the order in which they are taken. First of all 
the thermodynamic limit is taken on the external system, keeping the BCS 
model finite. Then one describes its evolution in terms of the corresponding 
quantum dynamical semigroup obtained by the weak coupling limit. Finally 
the infinite-volume limit of the BCS system is also taken for a suitable class 
of states. We emphasize the importance of this last step in relation to the 
mathematically well-developed theory of quantum dynamical semigroups 
(see Refs. 16 and 17 for references). It is only in the infinite-volume limit 
that the dynamical content of such a semigroup is clearly and plainly revealed. 
Here the relevant dynamical information contained in the semigroup appears 
in the structure of the associated flow discussed in Section 4 (equilibria, 
basins of attraction, bifurcations). These characteristic features remain 
completely hidden if one looks only at the form that the generator of the 
semigroup takes for a finite volume. The situation is very much the same 
as in equilibrium theory, where the possibility of having various phases and 
critical phenomena occurs only after the thermodynamic limit. 

To conclude this introduction, we can say that the open BCS system 
goes from disorder (normal phase) to order (superconducting phase) by 
bifurcation, the normal phase becoming an unstable thermodynamic branch 
below the critical temperature. As the laser, it provides a simple physical 
example, not only phenomenological, but rooted in the microscopics, of 
these self-organizing systems, which are so convincingly advocated in the 
recent books by Nicolis and Prigogine (18> and Haken. (19~ 

2. THE FREE E V O L U T I O N  OF T H E  S T R O N G  C O U P L I N G  
BCS M O D E L  

2.1. Quasi -Spin  Formulat ion  

In this work we shall use the quasi-spin formulation of the BCS model, 
which w'e briefly review3 2~ 

The Hamiltonian is 

H = ,  + I )  - (I) 
~ f ~  ~ , q ~  



Dynamics of the Open BCS Model 589 

where %~ (~ = +,  - ,  0) are the Pauli matrices 

~ + =  (00 1 0 ) '  ~  (0i ~) '  ~  (~0 

[a, +, %-] = 3~a, ~ [a, ~ %+] = 23,~% § 

~ 
(2) 

op + and %- are the creation and annihilation operators for Cooper pairs 
of electrons with momentum p. The electronic system is quantized in a box 
of volume V = L 3 with periodic boundary conditions, and the momenta 
take the values 

p = {2,rn~/L, nt = integer} 

The summation in (1) is restricted to a finite region f~ of momentum space 
in the neighborhood of the Fermi surface, so that sums are finite in (1) and 
H acts in the finite tensor product ]-I~n C 2 of single spin spaces. 

Finally, the kinetic energy E of the electrons has been taken independent 
o fp  in the region f2. 

Denoting by N = ~ a  1 the number of pair levels at volume V, we 
have N proportional to V, and after a redefinition of the coupling constant 
Ix, we may write the Hamiltonian in the form 

H~ = , ~ a~, ~ - ( i x ~ N ) ~  a,+%-, ix > 0 (3) 
P P q  

In (3) we have dropped the constant ~N term, which is irrelevant for 
the dynamics, and summations are always understood to run in f2. 

The interesting physical quantities are the intensive observables 

Or a SN ~ = ( 1 / N ) ~  p,  a =  + , - - , 0  (4) 

where �89 ~ + 1) is the density of Cooper pairs and SN + is the (complex) 
order parameter. 

The intensive observables are bounded operators 

IIS oll < ( l / N ) ~  < 1 (5) 

and commutators [SN ~, SN B] and [S~ ~, %B] are always of order O(1/N)  in 
operator norm. 

More generally, we shall consider the set of intensive "one-pair" 
observables SN"(g) defined as follows: 

Sz~'(g) = (l/N) ~ g(p)a~}' (6) 

where g(p) belongs to the class C~ of continuous functions on fL Then 
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HSN"(g)]] <. sup~lg(p) ] and commutators are also O(1/N) .  in particular, for 
g(p)  = 1 on f2, SN"(1) = SN ~. 

One can also view HN = N(~SN ~ - t ~ S N + S N  - )  as the Hamiltonian of a 
mean field X Y  model in an external magnetic field in the z direction. This 
interpretation is useful for geometric insight. 

2.2. The Free Dynamics 

We shall base our analysis of the dynamics on the Heisenberg equations 
of motion: 

d 
%N+(t) = 2iE%S(t)  + i t~SN+(t )~u~ 

d 
a~N- ( t)  = - 2 i~%N- (t)  - it*~~ ( t)  (7) 

d 
dt %N~ = 2ilxavN + ( t ) SN-  (t)  - 2itzSN + (t)~pN- ( t)  

where the volume dependence of 

crpN"(t) = e x p ( i H u t )  crp ~ e x p ( -  iHNt)  
(8) 

Sz~"(t) = e x p ( i H u t )  Su  ~ e x p ( -  iHut )  

is denoted by the index N. 
Since the evolution is unitary, equal time commutation relations are 

preserved. Commutators between intensive observables are still O ( 1 / N )  and 

l] SN"(t) I[ ~< 1 (9) 

We remark that the nonlinearity of the right-hand side of (7) enters 
only through the intensive observables Su~(t) ,  and we write (7) in a more 
compact form, introducing the three-component operator %u(t) = {o~z~(t), 
~ =  + ,  - , 0 } :  

d 
-~ %u( t )  = iFN( t )%u( t )  (10) 

where FN(t) = {F~v'(t)} is a 3 • 3 matrix acting on aps(t).  Its entries, which 
are defined in such a way as to reproduce (7), depend only on the intensive 
observables SN~(t). [One can always define FN(t) to act on the left, using 
equal time commutation rules, for instance 

d~ e~N(t) = - 2 i  ~ - ~2N(t) - i l~SN-(t)e~ 

Hence I ' f f - ( t )  = --2(E -- ~ / N ) ,  I'~7~ = - - ~ S N - ( t ) ,  and so on.] 
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The main observation is that the differential equations for the intensive 
observables that we deduce from (7) 

d SN+(t) = 2iESN+(t ) + ilzSN+(t)SO(t), 
dt 

can be solved explicitly with 

d o 
dt Ser (t) = 0 (11) 

SN~ = SN ~ SN+(t) = Su + exp[(2& + ilxSN~ (12) 

The constancy in time of S~ ~ expresses the conservation of the pair number, 
or the invariance under rotations around the z axis. 

Therefore, I'u(t) is a known function of time and time-zero intensive 
observables SN ~. Then the solution of (7) is given by the iteration series 

2 f? %N(t) = (i) . . . .  dh . . .  dr, r,,(h)-., rN(t,)~, 
n = O  "JO "10 

The series converges in the operator norm uniformly with respect to N since 
by (9) the matrix elements of F~(t) are operators bounded uniformly in N 
as well as in time. 

2.3. Macroscopic States and Free Evolution in the 
Thermodynamic Limit 

For a suitable class of states, the dynamics given by the series (13) 
simplifies considerably in the thermodynamic limit N--~ o% and can be 
written in a closed form. States leading to a macroscopic description of the 
system are those for which average values of intensive observables are well 
defined and uncorrelated as N---> ~ .  We incorporate this property in a 
definition. 

Let S(g)  = (l/If1[)fa S(p)g(p)  d3p be three classical functionals, where 
S(p)  = {S"(p), ~ = + , - ,  0} are three given continuous functions on f2 
satisfying S+(p) = (S- (p) )*  and IS"(p)] ~< 1, and consider a sequence of 
states pN (pu is a density matrix on C2eN). The sequence p~r is macroscopic 
at S(g)  if 

[r lim ON SN(gT = S ' ( g r )  (14) 
N ~ m  /. 

for all monomials ]-]T S~'(&) of intensive observables (6), where ~r = 
+ ,  - ,  0, and gr G C~ a (A class of macroscopic states is given in Appendix 
A.) 

a We note pN(Az~) = Tr pNAN = (AN>. 
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The simplification that occurs in the thermodynamic limit is due as 
usual to the fact that intensive observables commute, allowing us to treat 
them as c-numbers. 

For this reason, one is led to consider the semiclassical set of differential 
equations associated to (7): 

d 
d-tt aP+(t) = 2iee'+(t) + ilxS+(t)ep~ 

d 
d5 ap- (t) = - 2ie%- (t) - ilxS- (t)%~ (15) 

d 
-~ ~v~ = 2itxS-(t)% +(t) - 2it~S+(t)%-(t) 

where S + (t) and S-(t)  are now given time-dependent classical functions 

S+(t) = S + exp[(2i, + it~S~ S-( t )  = (S+(t)) * (16) 

and the %"(t) are the spin operators defined as solutions of (15) with initial 
values %~(t = 0) = %~. We notice that in (15) the spin operators for dif- 
ferent values o f p  are no longer coupled, and are independent of N. There- 
fore (15) can easily be solved in closed form as a quantum mechanical prob- 
lem in a single spin space (see Section 2.4). 

On the other hand, we can write (15) in the same manner as (10): 

d iI'(t)%(t) (17) 37 ~ , ( t )  = 

where %(0 = {%~t);c~ = + , - , 0 } ,  and I~(t)= {F~e(t)} is the 3 x 3 
matrix whose entries are the same as those of FN(t) but with the operators 
SN~(t) of (12) replaced by the classical functions S~(t) of (16) and terms 
O(I/N) dropped. Hence, solving (17) by iteration, we have 

% ( t ) =  T ( e x p i ~ 2 F ( t ' ) d t ' ) %  (18) 

The classical propagator T(exp if to r(t ') dt') is defined by the same absolutely 
convergent series as in (13) with PN(t) replaced by P(t). 

The main result concerning the free dynamics of the model defined by 
the Hamiltonian HN is that it is given for macroscopic states and as N - +  oe 
by the solutions of (15). 

Equivalently, the full quantum mechanical propagator can always be 
replaced by its classical equivalent (t8) as N--~ o~. 

Proposition 1. Let ON be a sequence of macroscopic states at S(g) 
and let oN t evolve with the Hamiltonian HN; then the sequence ON ~ is macro- 
scopic at S(g, t) = T(exp i f  to F(t ')  dt')S(g). 
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Proof. Let F(SN ~) = ~ = o  c,(SN~) ~ be a function of Su ~ defined by a 
norm convergent power series; then limN~oo pN(F(SN~)) = F(S~). Indeed, 

M 

pN(F(SN~)) -- F ( S  ~) = ~ C,[pN(SN~) ~ -- (S~) n] 
r ~ = 0  

[2 I + ON c,(Su~) ~ - c,(S~) ~ (19) 
n + 1  n = M + l  

Choosing M large enough, using Tr PN = pN(I) = 1 and (5), we can make 

as small as we wish uniformly in N. The same is true for the last term of 
(19), and the first term in (19) converges to zero as N--> oo by (14). By the 
same arguments, if F(SN ~) and G(SN z) are two functions defined by norm 
convergent power series, then 

lim pN(F(SN~)G(SNZ)) = F ( S O G ( S  B) (20) 
N..* oo 

In particular, since Su ~ is bounded, the exponential (12) in SN+(t) can be 
represented by its power series and 

lim pN(Su~(t)) = S~(t) (21) 
N ~ o o  

The integrand FN(tl) ... I'N(tn)SN(g) in the nth order term of 

SN(g, t) -= exp(iHNt) SN(g) exp(-- i H J )  = T exp i rN(t ')dt '  SN(g) 

is a sum of products of SN~(t). Therefore, with (20) and (21) its average 
converges to the classical quantity F(tl) ... F(tn)S(g). So do the time integrals. 
Finally, the whole series has the limit 

lira pNt(S~(g)) = lira pN(SNa(g, l)) = S"(g, t) (22) 
N--* co N - - * ~  

since, as in (19), the series converges uniformly with respect to N. With the 
use of the same arguments, the result holds for arbitrary monomials of the 
sNo(g) [] 

The proposition extends to other combinations of observables. 
It is obviously true for multi-time correlations pN(I~ SN%(gr,  tr)) that 

converge to their classical analogs 1~  S~,(g~, #). Later on, we shall also 
have to consider observables of the type 

1 [ [  ?t \ 1 ~ 1  
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In view of the algebra of the Pauli matrices, (I/N) ~p %Y%~ is still an 
intensive observable of the form (6). Then it follows from Proposition 1 that 
asymptotically the classical propagator (18) can be used in (23). 

2.4. Explicit  Solut ion of the  Semiclassical  Equat ions of M o t i o n  

The simplest way of solving (15) is by the Laplace transform method. 
We set 

j0 ~.~(z)  = e -Z t%~( t )  dt, Re z > O 

Then (15) becomes 

1 
opt(z) = [%+ + i a t z S + o v ~  iav)], 

z - 2iae 

zopO(z) _ %0 = 2 i t~S -6p+(z  + iv) - 2 i t z S + 6 ~ - ( z  - iv) 

Introducing (24) in (25) and solving for ep~ we get 

~,~ = ~ a~(z)~, ~ 

with 

tT.(z) = 2/zS~(IxS ~ + iaz) ,  
z ( z  2 + C o  2) ~ =  + ,  - 

z 2 + (t~S~ 2 
~O(z) - z ( z  2 + o~ 2) 

From (24) and (27) we obtain also 

~,+(z) = ~ ~(z)~, ~ 
O~ 

with 

b+(z) 1 [1 + i t~S+a+(z - iu)] 
z - 2ie 

D - (z)  = ilx S -  a - (z  - iv) 
z - -  2ie 

b~ ilz S + a ~  iu) 
z Z 2ie 

In (24) and (27), we have introduced the quantities 

v = 2e + txS ~ ~o = t~(S ~ + 4S+S-)  1;2 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(3o) 
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which will be the characteristic frequencies of the motion, o~ is proportional 
to the length of  the total angular momentum and v is the rotation frequency 
around the z axis. 

We get the time dependence by inverting (26) and (28). Since the #"(z) 
and b"(z) are meromorphic functions of z, one has simply to evaluate the 
residues of the various poles. The result is 

ep~ = ~,  a~(t)%% %+(t) = ~, b~(t)%% %-( t )  = (%+(t))* 
ot c~ 

(31) 

a"(t) = ~ e{r~~ ~, b~(t) = ~,  e ~{~ +'o)'v, ~ (32) 
y ? 

with the following matrices of coefficients: 

+ 

0 

+ - 0 

+ #s-(o~ - ~so) /~  ~ 

- u s - ( o ~  + ~so)/o~ ~ 

2 ~ 2 S - S ~  

-~S+(o~ + ~S~ ~ 

+ ~S+ (o~ - ~SO)/o~ 

2tz2S+ S~ 2 

~)  7 c~ - -  

+ 

+ 

2 t ~ S  + S- /~o 2 

2t~2S+ S -  /~o 2 

(~s~ ~ 

(33a) 

(~o -/zS~ 2 - (txS+)2/w ~ +#S+(oJ  - /zS~ 2 

(oJ +/zS~ 2 - (tzS+)2/~o 2 - u S  + (~o + tzS~ 2 

212S+ S - / o )  2 2(/zS+)2/oJ 2 t~2S+ SO/oj 2 

(33b) 

One cap. note the following consistency relations: 

u~ ~ = 360, ~ v, ~ = 3.+ (34) 
7 7 

giving the correct initial values ~p~(t = O) = %% and 

u ~ S  ~ = S~oS ~ ~,  v ~ S  ~ = S~oS + 
c~ 

These identities ensure that the evolution law (16) of the intensive observables 
holds true. 

Proposition 1 shows that for macroscopic states, the dynamics can be 
safely calculated in thermodynamic limit by formulas (32) and (33). 
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One should remark that this dynamics does not originate in general 
from the one-spin effective Hamiltonian 

Hoef = ~ o  _ ~ , ( s + ~ -  + s - ~ + )  + ~ s + s -  (35) 
Here is obtained by linearizing HN around the classical C numbers S + and 
S- ,  that is, setting in (3) 

s N + s ~  - ~_ s + s  - + ( s ~ -  - s - ) s  + + ( sN  + - s + ) s  - 

It is known that Heff is thermodynamically equivalent to H~ as N--> co. It 
has also been shown that Herr produces asymptotically the correct dynamics 
if and only if the "gap equations" 

S + = 0  or v = 2 e + / . S  ~  (36) 

hold in the considered state. ~12'14~ 
The same conclusion is immediately seen here, since when (36) holds, the 

semiclassical equations of motion (15) are precisely those generated by//err. 
In particular, in an equilibrium state, (36) is valid (S § = 0 corresponds 

to the normal phase, v = 0 corresponds to the condensed phase) and time 
correlation functions can be evaluated using (35), as has been shown in 
Ref. 13. 

In the next section we shall deal with nonequilibrium states and for this 
reason we need to consider the full time development as given by (32) and 
(33). 

The Hamiltonian HN is a special case of a general class of mean field 
systems that has been considered by Hepp and Lieb in Ref. 21. Such models 
have the feature that the equations of motion of intensive observables form 
a finite closed set of nonlinear differential equations, and this is the basic 
reason for their solvability. A simplification that occurs in our case is that 
this set, which is (11), can be explicitly solved, because of the conservation 
of pair number (SN ~ is a constant of motion). Therefore, as N--> co, average 
values of S:v~(t) follow trivially the classical equation (16) [cf. proof of (21)]. 
The same result is true in general for these models: average values of intensive 
observables obey the corresponding classical differential equations in macro- 
scopic states ~21~ (cf. also the appendix of Ref. 14). Then the full microscopic 
dynamics is in principle completely determined by a propagator of the type 
(18), involving only the known classical trajectories of intensive observables. 

3. D Y N A M I C S  OF THE OPEN S Y S T E M  

3.1. Coupl ing w i t h  the Heat  Bath 

We consider now the BCS model described in Section 2.1 by the Hamil- 
tonian (3) as an open system which can exchange energy with a heat bath. 
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The main effect of the bath will be to create or destroy electron pairs. We 
can think of it as being some external agency (as the lattices vibrations), 
which causes fluctuations of the number of Cooper pairs. It can also incor- 
porate the effect of short-wavelength modes of the BCS system itself, which 
have already been thermatized and interact with the slowly varying observ- 
ables such as the order parameter. In any case, we shall idealize the interaction 
mechanism with the heat bath in the simplest possible way. We assume: 

(i) The coupling V is linear both in the electron pair operators %+ and 
ap- and in the creation and annihilation operators of excitations of the 
bath. 

(ii) Relaxation of different p modes is not correlated through the bath, 
which we describe mathematically by attaching to each p an independent 
copy of the same given bath. 

Thus, we write 

AV = A ~ [% +a,(f) + % - a , * ( f ) ]  (37) 
P 

a, + ( f )  = f a, + (k)f(k) dak (38) 

ap+(f) creates an excitation with wave functionf(k) in the p-bath associated 
with the mode p, and A is some coupling constant. 

Moreover, we take the evolution of the p-bath to be quasi-free, that is, 
generated by a quadratic Hamiltonian, which can formally be written as 

lip ~ = f dak ~(k)ap+(k)ap(k) (39) 

where ~(k) is the energy spectrum of the excitations. 
It is equivalent to saying that the evolution of the bath is completely 

given in terms of that of the one-excitation states: 

exp(iH~Bt) ap(f) exp(--iHpBt) = ap(ft) (40) 

withft(k) = {exp[-i~(k)t])f(k).  
Finally, we choose for mathematical convenience that the ap+(k) and 

a~(k) obey the Fermi statistics anticommutation rules. Boundedness of 
Fermi operators renders mathematical proofs easier, but the same results 
would follow formally if we had Bose statistics instead. 

Then the Hamittonian for the total system is 

H = HN + ~, Hp B + )t ~, [%,+a,(f) + %-a ,+ ( f ) ]  (41) 
P P 

We are interested in finding the motion of a few intensive observables 
of the open BCS system. For this it is sufficient to deal with the part of the 
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total state reduced to the BCS system by tracing out the degrees of freedom 
corresponding to the bath. This can be done with the Zwanzig projection 
technique (22~ (see Ref. 23 for references), and the evolution of the reduced 
state is governed by the generalized master equation 

d 
d~ pt = i[HN, p~] + Z z ds J~f(;t, s)p,_s (42) 

Equation (42) is derived under the three following assumptions on the initial 
state of the coupled system: 

(a) There are no correlations between the two systems at time t = 0. 
(b) The initial state of the bath is stationary under its free evolution (40). 
(c) The average value of the interaction vanishes in this state. 

Assumptions (b) and (c) are obviously fulfilled for the interaction (37) if 
we have the bath in thermal equilibrium at time t = 0. 

All the effects of the interaction with the bath are contained in the 
kernel ~f"(A, s) acting in the state space (density matrices) of the BCS system. 
SU(A, s) has a very complicated structure, involving in particular multitime 
correlation functions of the bath of all orders, and the integrodifferential 
equation (42) is only mathematically tractable in a limiting situation, the 
weak coupling or van Hove limit. For a discussion and a review of various 

�9 applications of the weak coupling limit see Ref. 11. Let us recall here that in 
this limit, one lets A ~ 0 and simultaneously scales the observation time by 
setting t = ;~-%, r fixed. The mechanism of the weak coupling limit is im- 
mediately seen in (42) at an heuristic level. If we still denote by p~ the state 
expressed as a function of the new parameter r, then (42) becomes with this 
change of variable 

d ~-2~ 
dr  m = ds J{'(A, s)p~_a2~ (43) 

"~0 

(We have suppressed the free evolution part of (42), which plays no role when 
we study the evolution of a constant of the free motion of the BCS system; 
otherwise one removes it by going to the interaction picture.) Letting now 
formally ~ -+ 0 in (43), we get 

d fo ~ -dr P' = Gp~, G = ds YU(O, s )  (44) 

Thus, in the limit, the non-Markovian feature of (42) disappears, to give rise 
to an ordinary differential equation of semigroup type in the scaled time 
variable ~-. 

A correct derivation of (42) and a mathematical justification of the weak 
coupling limit are not trivial. We refer to Refs. 1 and 2 for a complete 
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mathematical study. The essential property needed for the validity of the 
weak coupling limit is a sufficiently fast decrease of the time correlation 
functions of the bath in its initial state. Such decrease properties can only be 
obtained if the bath is treated as an infinitely extended quantum system. 
Therefore, the proper mathematical setting for the description of our bath 
is that of a quasi-free Fermi system with initial state satisfying the KMS 
equilibrium condition at inverse temperature/3. ~24~ Since it is well known that 
quasi-free states are determined by their two-point correlation functions, the 
only correlation functions of the bath that are involved in the kernel Y(;~, s) 
are 

Cl(t)  = (ap(ft)a~+(f))~, C2(t) = (a~+( f )av ( f ) ) ,  (45) 

where ( '")8 are time-zero equilibrium averages. {For instance, an explicit 
expression of Cl(t) with (38) and (39) is 

( 1 ) 3 f  2_exp[-ie(k)t]~ Cl(t) = ~ da k If(k)] 
1 + exp[-/3,(k)] ) 

We assume that the decay in time of Cl(t) and C2(t) is 0(1/t~%7), ~ > O, 
for t -+  oo. 

The KMS condition expressed in terms of the Fourier transforms 
~y(k) = f dt e~ktC~(t), j = 1, 2, is 

~z(k) = eBkC2(-- k) (46) 

Moreover, C~(k) and C2(k) are real nonnegative functions. 
With this we are precisely in the range of application of theorem 2.3 of 

Ref. 1, asserting the existence of the weak coupling limit. (Remember that 
for finite N, states of the BCS system are in a finite-dimensional Hilbert 
space.) 

Specializing to our case the general form of the generator GN, (44), 
which can be found in Ref. 1, one obtains for any observable AN of the 
finite BCS system 

d 
d~ P~(A~)I~= o -- (G,,pN)(AN) 

= t,N - dt {[AN, ~+N(t)l~,- C~(t) - ~ , -  [AN, ~+N(t)]C2(t) 

+ [AN, ,~yN(t)]%+C2(t) -- ~,+[AN, ,r;-N(t)]C~(--t)}] (47) 

If  AN does not commute with HN, one has to add to (47) the free evolution 
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term of (42). [For a calculation very similar to (47), in the context of Ising 
systems, see Proposition 2 of Ref. 9.] Equation (47) is the basic formula 
upon which all our subsequent study of the open BCS system relies. 

3.2. Equation of Mot ion  of Intensive Observables 

The master equation (47) is still a microscopic evolution law since it 
may be used to predict the value at time r of any observable of the BCS 
system. In fact, we will be only interested in the macroscopic motion of the 
number of electron pairs �89 ~ + 1) and the order parameter SN + as N - +  or. 
We therefore specialize AN in (47) to be components of the vector SN. More- 
over, one must distinguish between rapidly and slowly varying observables 
(in the ~- time scale). We set RN = SN+SN - and we introduce the gap operator 
AN (the modulus of the order parameter) 

A~ 2 = 4SN + SN- = 4RN (48) 

Clearly AN and SN ~ which are constants of the free BCS motion, evolve 
slowly when a weak coupling with the bath is switched on, whereas the free 
evolution (12) produces fast oscillations of the complex order parameter with 
frequency A-% (A-+ 0). We will be concerned here with the evaluation of 
(47) for AN and SN ~ in the thermodynamic limit, and we shall study the 
complex order parameter in Section 4.4. 

It is more convenient to work for the moment with RN instead of AN. 
We shall come back to AN later by the change of variable (48). 

Let us denote by F S  and Fifo the operators occurring in (47) for the 
choices AN = RN and AN = SN ~ respectively, i.e., 

(6NON)(RN) = pN(FJ )  = ( f  ~ N) 

(aNON)(Sg) = oN(Fg) = (F~o) 
(49) 

FR N and Fifo are the sums of four terms, the first of them involving 

for FR N, and 

BN(t) = ~ [RN, ~;N(t)]~,- (50) 
P 

Cu(t) = ~ [SN ~ @-N(t)]%- (51) 
P 

for Fifo. 
All the other terms have a similar structure and it is sufficient to discuss 

(50) and (51). The commutators in (50) and (51) are straightforward to 
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compute since both RN and SN ~ are constant of the free evolution. Thus, 
using equal-time commutation relations, we get 

: E = oo ( , ) .  _ (52) 
p p 

2 

P P 

(53) 

Before evaluating (52) and (53) explicitly we note some points concerning 
the structure of BN(t) and CN(t). 

(i) The only operators appearing in (52) and (53) are of the form (23), 
and products of such quantities with other intensive observables S ~ ( t ) .  
Therefore, in view of the nature of the propagator T(exp if'o rN(t ')dr ') ,  
BN(t) and CN(t) can be expressed as functions of time-zero observables 
S:~" only. 

(ii) Bz~(t) and Cz~(t) commute with RN and SN ~ They commute with 
SN ~ because of the gauge invariance of the free dynamics of the BCS model. 
Moreover, being functions of the Ss" only, they commute with the length 
of the total "spin angular momentum" 

(SN~ 2 + 2(SN+SN - + SN-SN +) = (Su~ 2 + 4RN 2 -- 2Su~ = co~z/lx 2 

and consequently with RN. 
(iii) The preceding remarks imply that Bn(t)  and CN(t) can be expressed 

entirely in terms of the two mutually commuting observables RN and SN ~ 
Thus F S  and Fifo can be considered as classical functions in the functional 
calculus of RN and SN ~ (or coee and S~ ~ (see Appendix C). 

We assume from now on that the sequence of time-zero states pn is 
macroscopic at S ", a = + ,  - ,  0 [in the sense of the definition (14)], where 
S" are arbitrarily prepared initial values. 

Since, by remark (i), BN(t), CN(t), and the other similar quantities 
appearing in (47) involve only intensive observables for which Proposition 1 
applies, the integrands of (47) converge as N --> oo if the sequence of states 
is macroscopic, and we can use the semiclassical form of the propagator 
(3i). We find that the limits of these integrands are 

- S + ( t ) [ - a ~  - + �89 + S~ 

+S+( t ) [a~  - + la+(t)(1 - S~ (54) 

+ complex conjugate 
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i fAu = SN+SN - = RN, and 

[ - 2 b ~  - + 2b+(t)�89 + S~ 

- [2bO(t)S - + 2b+(t)�89 - S o ) ] c 2 ( - t )  (55) 

+ complex conjugate 

if AN = SN ~ 
As the sequence of the integrands is uniformly bounded with respect to 

N i n  operator norm by const x [[C~(t)[ + [ Q ( - t ) t  + IC2(t)] + ]C l ( - t ) l ] ,  
which is integrable by assumption, the dominated convergence theorem 
allows us to conclude that 

~ oo 

lim pN(FR N) = FR(R, S ~ = - S+ S - dt e~'ta~ 
N - ' ~ o ~  

+ �89 + S ~ dt e~V~a+(t)C~(t) 
o0 

f oo 
- S + S  - dt e~a~  - t) 

oo 

E - iS+(1 - S o) d t e ~ V t a + ( t ) C 2 ( - t )  
09 

(56) 

and 

~ oo 

lim pN(Fffo) = Fso(R, S ~ = 2S-  dt b~ 
N ' - +  ~ 1 7 6  co 

- (1 + S O ) dt b+( t )C~( t )  
o0 

F + 2 S -  dt b ~  t)  

~ oo 
+ (1 - s o) dt a + ( t ) C 2 (  - t)  (57) 

oo 

In obtaining (56) and (57) we have used complex conjugate terms together 
with symmetry properties of  the a~(t) and b~(t) to recover the full ( - 0 %  oo) 
time integration range. 

Replacing now b~(t) and a~(t) by their explicit expressions (32), one 
sees that the integrals will give Fourier transforms of Cl ( t )  and C2(t) at 
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points v, v + ,~, v - co. We can then use the KMS relation (46) to write 
the right-hand sides of (56) and (57) in the form 

t~2S ~ _ . fly Fr,(R, S ~ = C(v) 7 tann 

and 

with 

_ r  + ~)o~ - ~ s  o ( 
~ o ~ -  

- C(v - o~) ~' + ~ s ~  ( 
2,02 o, 

tanh fl(v + oJ)] /z 
2 ] 

+ t~ tanh fl(v - ~~ R (58) 

~(va 2/~2R tanh -~ Fso(R, S ~ = - , 

- t ~ ( v  + ~o)(c~ - IzS~ ( ~ - / ~ - ~  /~ tanh fl(v+oJ)2 oJ ) 

_ r  _ ,o) (o~ + ~s0)2 ( f l ( v - , o )  ) 
4tz~o2 /z tanh ~ + oJ (59) 

~(k)  = Cl(k) + C z ( - k )  (60) 

o~ =/z[(S~ 2 + 4R] 1/2 = tz[(S~ 2 + A2] lt2, R = �88 2 (61) 

Equations (58) and (59) generate a nonlinear autonomous two-dimensional 
differential system for R and S~ 

__d R = F~(R, S~ a SO = Fso(R, S ~ 
dr 

Written in terms of A and S ~ this system becomes, with the change of 
variable (61), 

__a = 2 F~(R, S o) = F~(A, S~ __a SO = Fso(A, S o) (62) A 
dr dr 

we shall abbreviate it by 

d x (r )  = F(XO')),  X0") = (A(r), S~ (63) 

the components of the vector field F(X) being defined by (62), (58), and (59). 
Let us show that in the thermodynamic limit the macroscopic observ- 

ables A N and SN ~ evolve indeed without fluctuations according to the deter- 
ministic equations (63). For this one has to find the behavior of higher 
order correlations pm((sNO)k(AN2) z) (k, 1 = 0, 1, 2,...) as N---> oo. 
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by 
Inserting, for instance, AN = (SN~ k in (47), we find that (53) is replaced 

P 

P 

2 + 0 k n l 

where we have used the fact that equal-time commutators are always O(1/N) 
uniformly in t. Thus, we find, as for (59), 

lim (GNpN)(SNO) k = Fso(X)k(S~ k-* = Fso(X) ~ o  (S~ k 
N.~oo  

In the same way the commutator structure of (47) leads, for general monomials 
of AN and SN ~ to 

lim (G~p~)[zX~(SN~ ] = Fa(X)  ~ + Fso(X) [A2~(S~ 1 (65) 
N - + m  

This means that the generator of motion of  any macroscopic probability 
distribution for X = (A, S o) consists of the purely drift term (65) [in (65) 
we have the dual action of this drift term on observables]. Accordingly, the 
evolution of such probability distributions is induced by the two-dimensional 
flow generated by (63) and there are no fluctuations. 

The fact that the open dynamics is described by a closed differential 
system involving only the two intensive observables 2~ and S ~ is due to the 
mean field nature of the BCS Hamiltonian (3) and its gauge invariance, 
One should emphasize that (63) is valid far from equilibrium since initial 
values X = (A, S 0) can be any point in the physical domain that is the 
half-disk 

= {X: IX[ 2 = (S~ 2 + A 2 ~< 1, A /> 0} (66) 

The coupled evolution of A and S o results from an interaction with the bath 
that is not gauge invariant, thus modifying the number of  Cooper pairs. If  
we had chosen instead of (37) a gauge-invariant interaction (like the scatter- 
ing of electron pairs), S o would still be a constant of the motion of the open 
system, and (63) would reduce to a single equation for the gap parameter &. 

The properties of the flow generated by (63) are the subject of the next 
section. 
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4. DESCRIPTION OF THE FLOW 

4.1. Local Properties 

I t  is well known that there will be locally a unique solution of our 
differential system (62) if the field satisfies a local Lipschitz condition. We 
show in Appendix C, Lemma 4, that if  the correlation functions of  the 
bath satisfy 

o ~ ICj(t)lt ~ dt < j = 1, 2 (67) 

then F(X) belongs to the class C k of k-times continuously differentiable 
functions. In fact, if  the Fourier transform C(k) is of  class C 1, it is obvious 
in (58) and (59) that F(X) is also C 1 for ~ # 0. But oJ = 0 is not a singular 
point. F(X) can be defined by continuity at co = 0, setting 

F(0) = lim F(X) = (0, - C(2~) tanh fl,) (68) 
X ~ 0  

and it can be checked by direct calculation that F(X) is also C 1 at ~o = 0. 
From now on, we assume that (67) holds for some k /> 1, ensuring 

local existence and unicity of  the flow in the disk IX] ~< 1. 
Moreover, we assume also throughout this and the next subsection that 

C(k) is everywhere strictly positive. Cases where C(k) vanishes will be 
investigated in Section 4.3. 

Before discussing the equilibria of the field, let us notice that the axis 
2x = 0 is an invariant manifold of  the flow. Indeed for 2x = 0, co =/~IS~ 
and (62) reduces to 

d SO(r ) = _•(2E)[SO(r) + tanhflE] (69) 

(69) is simply the relaxation equation of a spin in an external magnetic field, 
as would be intuitively expected from the Hamiltonian (3). 

The thermal equilibria of  the free BCS model in the thermodynamic 
limit are given by the solutions of  the mean field equations associated with 
Hell, (35). They are 

Xo = (0, - tanh/3E) (70) 

which exists for all temperatures and corresponds to the normal phase. 
I f  the temperature is less than the critical temperature Tc defined by 4 

tanh/3cE = 2~/t~, Te = 1/kB~c (71) 

4 We shall assume that the parameters r and t~ are such that E > 0,/z > 0, and 2~//~ < 1. 
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there exists a second solution with A~ ~a 0 corresponding to the 
superconducting phase 

Xs = (As, - 2e/,) (72) 

where A~ is solution of the implicit equation 

tanh /~; +A"21 . ~ :  I_k.]  + 

It is easily checked that ,go and Xs are also equilibria of our vector field. It 
is of course expected that such thermal equilibrium values of the free BCS 
system are stationary under the evolution obtained in the weak coupling 
limit. 

4.1.1. Normal Phase.  Equation (69) shows that F(Xo) = 0 for all tem- 
peratures T. The linear part of F(X) at -go is 

(DF)(Xo)= (~ A02) 

with 

C ( 2 ~ - .  tanh/~Q [~ ] 
)'1 : -  -2-tanl~ ~ tanh (2e - ,  tanh fiE) (74) 

A 2 = -r < 0 

Since for T > To, tanh fie < 2E/t~, both eigenvalues are negative, and X0 is 
hyperbolic and asymptotically stable. The phrase portrait is a node. There 
is an exponential approach to equilibrium in both directions with relaxation 
times ~ti -1 and 2,s t. 

For T = To, (71) shows that A1 = 0, and Xo is no longer hyperbolic. 

4.1.2. Superconduct ing  Phase, For T < T~, A1 > 0, the A direction 
becomes unstable and Xo is a saddle point. One sees in (58) and (59) that a 
new equilibrium point occurs for v = 0 and , tanh (/3co/2) = ~, which is 
precisely Xs. 

Therefore, T = Tc is a bifurcation point for the system (63) and the 
branches of location of equilibria are shown in Fig. 1. 

The linear part of the field at X = Xs is of the form 

(DF)(Xs)= (: bd) 

One finds that 

1 a + d = -~-~-~2 [C(O)flF a A2 + C(oJ)(oJ - .S~ z 

+ C(-,o)(~o + . so)~] l~=x ~ < o 
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T = T 
c 

X ~ (T > T c) 

: X ~ = X s = (0,-2 e/~l 

X ~ (T < T c) 

s o 

Xs(T ~ Tc) / 

Fig. 1. Bifurcation of the set of equilibrium points. 

and that a d -  bc is proportional (with a positive factor) to (-D/DA) • 
{#z tanh[/3(o~ + v)12] - oJ}lx=xs , which is seen to be a positive quantity for 
T < To. These facts ensure that both eigenvalues of (DF)(Xs) have negative 
real parts for T < To. One can, moreover, prove that both eigenvalues are 
real; consequently the phase portrait is a node. Hence Xs is hyperbolic and 
asymptotically stable, and the approach to equilibrium is exponentially fast 
in a neighborhood of Xs. [Remember, however, that in view of  (69) the 
trajectory with initial value A = 0 converges always to X0 as ~- --~ oo.] 

Stability at the critical temperature cannot be decided here since in this 
case Xo = Xs is not hyperbolic. It will be discussed in the next section with 
the help of a Liapunov function. It will also be shown that Xo for T > T, 
and Xo and Xs for T < T~ are the only equilibria of the field [when C(k) is 
strictly positive]. 

4.2. Global Properties 

We begin with the proof  of the existence of global solutions of Eq. (63). 
As usual, this follows from some a priori estimation on the solution. It is 
expected that, given an initial condition in the physical domain N, (66), the 
solution that it defines remains in ~ as long as it exists. This is indeed 
true: 

I . emma 1. ~ is positively invariant under the evolution determined by 
the field F. 
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Proof. We analyze the behavior of F on the boundary of N. Direct 
computation gives 

- � 8 8  S ~  (75) 

which is obviously negative since Itanhy] < 1 and C(k) > 0. This means 
that the field F points inward on the boundary of the unit disk, therefore 
preventing the trajectory from escaping from the disk. Moreover, each of 
the two half-disks 2~ >t 0 and A ~< 0 is separately invariant. 

Indeed we know from (69) that the axis A = 0 is itself a trajectory. As 
a consequence of local unicity, no trajectory with initial value A > 0 can 
cross the line 2~ = 0. Thus ~ is positively invariant. In fact, the symmetry 
property of the field 

F6(A, S ~ = - F A ( - A ,  S~ fso(A, S ~ = f z o ( - A ,  S ~ (76) 

implies the symmetry of the phase portrait with respect to reflections around 
the/x axis. �9 

Lemma 1 implies the existence of global solutions of (63)Y 5~ 
In order to be able to describe global properties of solutions, we shall 

build a Liapunov function. Let us recall that a Liapunov function relative 
to an equilibrium point .~ has to satisfy 

L( s  = 0 

L ( X )  > 0 for X 4: -Y (77) 

L(x) <. o 

If, furthermore, the last inequality is strict (except at point .~), L is a strict 
Liapunov function. 

A motivation for the search of a Liapunov function is given by the 
remark that the free energy ~(p) considered as a functional of the state has 
to be minimum for equilibrium phases, 

$(p) = V(p) - TS(p) (78) 

where U(p) = Tr pH and S(p) = --kB Tr p In p are the average energy a n d  

entropy. 
The fact that q~(p0 is a decreasing function of r when p, evolves according 

to a dissipative semigroup obtained in the weak coupling limit is proved in 
Ref. 11. In Ref. 11, -(d/dr)~(p,) is identified with the entropy production 
and the result holds for quantum systems in finite-dimensional Hilbert 
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spaces. The same property has also been used for the study of the stochastic 
Ising model in the thermodynamic limit/26~ 

In our case we calculate the free energy associated with states that are 
macroscopic at S ~ (e = + ,  - ,  0) in such a way that ~(p) becomes a func- 
tion of the intensive observables only. This can be done simply with states 
that are products on all modes of the one-spin states (see Appendix A) 

P = S + �89 S ~ 

For such states and the Hamiltonian (3), the free energy density in the 
thermodynamic limit is 

~(p)= ~s o ~A~ - ~ + (1//3) Tr p In p 

and with (79), setting V(A, S ~ = ~(p) ,  

V(A, S ~  /~(eS o -  - ~ )  +~1(1 + ~ ) l n ~ ( 1  + ~)  

+ l ( 1 - ~ ) l n ~ ( 1 - ~ ) ~  (80) 

l . emma 2. 12(X) .%< 0 in ~ and the only zeros of 12(X) in -@ are Xo for 
T i> To, and Xo and Xs for T < To. 

Proof. By differentiating V and introducing (62), we obtain 

d 0V .A 0V "A I2(A, S o) = ~ V(A, S ~ = FA(A, S ~ ~-~ ( , S o) + Fso(A, S o) ~ ( , S ~ 

= - C(v) ~ A~v tanb -~ - C( .  + o0 
(,o /~SO) 2 

8 /~  2 

2 ~o ~(v + ~o) - In ~ + / x -  

8~co 2 ~ tanh  ]3(v - ~) ~ + ~  

x [ f l ( v - m ) + I n  ~+/~_ ~] (81) 

The first term is obviously negative. So is the second: The formula 

In ~ +-------~ = 2 argth -~ (82) 
p . - c o  ~ 
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shows that ~ tanh[/3(v + ,0)/2] - co and fl(v + o)) - ln[(t~ + w)/(~ - w)] 
have the same zeros and thus their product has a constant sign, which is 
positive. The same argument applies to the third term. 

The above discussion not only proves the first part of the lemma, but 
also shows that the three terms in (81) have to vanish separately if 12(X) 
vanishes, all of  them being nonpositive. This can only be the case at X = X0 
for T >/ Tc and Xo and Xs for T < Tc [notice that l;'(0, 0) = - (~(2~)fl~ x 
tanhfle ~ 0]. �9 

We define now 

Lo(X) = V ( X ) -  V(Xo), Ls(X) = V ( X ) -  V(Xs) (83) 

and state: 

L e m m a  3. (i) For T/> T~, Lo is a strict Liapunov function associated 
with X0 on -@. 

(ii) For T < Tc, Ls is a strict Liapunov function associated with Xs 
on  ~ - {Xo}. 

Proof. The only thing to prove is the positivity of Lo(X) and Ls(X) in 
the appropriate range of temperature. This is done in Appendix B. 

P r o p o s i t i o n  2. (i) For T 1> Tr Xo is the only equilibrium point 
of F(X); it is asymptotically stable and its basin of attraction is -@. 

(ii) For T < To, Xo and Xs are the only equilibrium points of F(X);  
Xs is asymptotically stable and its basin of attraction is ~ ' =  
{ x  = ( a ,  s ~ e 2 :  a # 0}. 

Proof. The nonexistence of equilibria different from Xo and Xs is a 
direct consequence of Lemma 2, since an equilibrium has to be a zero of 
;(X).  

Asymptotic stability of Xo for T >/ Tc and Xs for T < Tc follows 
immediately from Lemma 3. 

Thus, the only remaining question is the extent of the basins of attrac- 
tion. We first treat the case T i> T~. Consider a trajectory associated with F 
and with an initial value in -@. Since by Lemma 1 this trajectory is confined 
in -@, which is a compact set, its oJ-limit set f) is nonempty. On the other 
hand, f~ is included into (Ref. 27, p. 539, Lemma 11.1) 

{ x ~ :  ; ' ( x )  = 0) 

In this range of temperature this means by Lemma 2 that fl = {Xo}. Hence 
Xo is the single w-limit point of all trajectories in -@. Therefore, we can con- 
clude that all trajectories tend to this point as ~- goes to infinity (Ref. 27, 
p. 146, Corollary 1.1). 
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(a) 

xo 

(b) 

Fig. 2. Phase portrait of the field F(X) at various temperatures, a), T > Tc (fl = 1/3); 
b ) ,T< Tc(fl = 0,62). 

In the other case T < Tc, we obtain by a similar reasoning that f~ is 
included in {X0, Xs}. The fact that the trajectory remains in the compact 
set ~ implies that ~q is connected (and nonempty) (Ref. 27, p. 145, Theorem 
1.1). We thus have the two possible situations f2 = {Xo} or f~ = (Xs}. For 
T < To, 7(0 is a saddle point; hence there exist exactly two trajectories 
tending to Xo as ~-~  oo. (28~ But we know these two trajectories from (69): 
They constitute the A = 0 axis. Therefore, any other trajectory with initial 
A # 0 must have Xs as a single oJ-limit point and tends to it as r -+ oo. �9 

The proposition means that, except for the line A = 0, when T < To, 
the thermodynamic phases are global attractors in the physical domain. 
The result holds also at the critical temperature, Xs being still asymptotically 
stable, although decay is not exponentially fast (critical slowing down). 

A numerical study of the trajectories of system (3.26) provides an illus- 
tration of our previous analytic study. 

The phase portraits drawn in Fig. 2 correspond to the following numerical 
values: 

(~--- 7, E = 7, /~ = 4 (which gives tic = 0, 549) 

4.3. S t ruc tura l  S tab i l i ty  and Acc identa l  Equil ibria 

We study here the influence on the dynamics of the coupling function 
C(k) with the bath. For  finite systems, criteria have been given for the 
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coupling with the bath causing the system to approach a unique equilibrium 
state under a dissipative semigroup evolution3 z9'3~ In our case, the analysis 
of Section 4.2 has shown that the thermodynamic points Xo (for T/> To) 
and Xs (for T < To) are global attractors of the flow provided that (~(k) > 0. 
If  C(k) can Vanish, there may occur other equilibria, which result from the 
nature of the coupling with the bath. The relevant mathematical concept 
that discriminates thermodynamic equilibria from others is the concept of 
structural stability. (See also Ref. 10.) 

The vector field F(X) is structurally stable if there exists a neighborhood 
of F(X) (in a suitable topology on the set of vector fields) such that all fields 
in this neighborhood have topologically equivalent flows. This property is 
very desirable from the physical viewpoint. The dynamics of the system 
should not depend critically on the detailed nature of the thermal bath and 
of its interaction. If  our field F(X) is structurally stable, this precisely means 
that we can slightly modify the coupling function C(k) without changing 
qualitatively the phase portrait of trajectories. On the basis of the preceding 
analysis, we can also deduce the structural stability of F(X) when C(k) is 
strictly positive (i.e., the only possible equilibria are the thermodynamic 
ones) and T r To. 

For this we recall four results of Sections 4.1 and 4.2, obtained under 
the assumption of strict positivity of C(k): 

(i) Fpoints  inward on the circle IX] = 1. 
(ii) At any noncritical temperature the equilibria of F are hyperbolic. 
(iii) No periodic orbit can exist, since we have a strict Liapunov function. 
(iv) There is at most one saddle point. Hence no trajectory goes from 

saddle to saddle. 

According to a theorem by Pontryagin and Andronov, ~25) the four preceding 
facts guarantee the structural stability of F on ~ for T r To. 

At T = T~ the emergence of a nonhyperbolic equilibrium destroys 
structural stability. This has of course to be the case, since the phase portrait 
changes at the bifurcation point. 

We drop now the restriction C(k) > 0 and show that the new equi- 
libria X (X r Xo, Xs) that can possibly result of the zeros of C(k) are of 
very different nature from the thermodynamic ones: they are never hyper- 
bolic, contrary to Xo and Xs (for T r T~). As a consequence, if such an 
equilibrium )7 occurs, the field cannot be structurally stable and .~ can be 
removed, by a small perturbation of the function d(k). In this sense these 
new equilibria are produced by a peculiarity of the coupling with the bath 
and have to be considered as accidental. 

We still suppose that C(k) is continuously differentiable, so that any 
zero of C(k) is also a zero of its derivative [remember that ~(k) /> 0]. 
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Let X ~ ~ (X r Xo, Xs) be an equilibrium of F(X) for which at least 
one of the quantities C(v), C(v + oJ), C(v - o~) vanishes. Then IT(X) must 
also vanish at X = X. Using the expression (81) for 12(X), which is a sum of 
three negative terms, we can explicitly enumerate all the ways of having 
12(X) = 0. Then for each case, we compute the linearized part  of  the field 
at X and show that it has at least one eigenvalue that is zero. We shall not 
give the complete enumeration here, but content ourselves with a few 
illustrative cases. 

Assume, for instance, that .~ is such that C(v + ~o) = 0. Then, we can 
have 12(.~) = 0 with X ~ Xo, Xs if at least one of the following four 
situations occurs: 

(a) A = 0 and (oJ + /zS ~ = 0. 5 We immediately see in (59) that X is 
a double zero of Fso(X), thus showing that .~ is not hyperbolic. 

(b) C ( v ) =  0 and /z tanh[/3(oJ- v)/2] + ~o = 0. Then one can check 
that the linearized part  of the field at X is of  the form (~ aa ca). This matrix 
has obviously a zero eigenvalue. 

(c) C(v) = 0 and (~o + / z S  ~ = 0. Then .~ is a double zero of both 
Fso(X) and FA(X). 

(d) d(v) = 0 and C(o~ - v) = 0. Since the zeros of  C(k) are themselves 
double, .~ is again nonhyperbolic. 

I f  C(2E) = 0 the origin is an equilibrium [cf. (68)]. By (69) all other 
points of  the A axis are also equilibria. All of  them are nonhyperbolic, since 
F(X) is identically zero on this axis, and again the field cannot be structurally 
stable. 

We summarize the situation in the following: 

Proposition 3. Assume C(k) ~ C:. 
(i) I f  C(k) > 0, the field is structurally stable on ~ for all T ~ To. I t  

is not structurally stable for T = To. 
(ii) I f  C(k) >/0, and there exists an equilibrium .~ different from the 

thermodynamic ones Xo and Xs, then the field is not structurally stable 
on 9 .  

This proposition provides a clear distinction between thermodynamic 
and accidental equilibria. 

4.4. The Complex Order Parameter 

We consider now the evolution of the three-dimensional vector S x, 
S Y, S O or equivalently S § S - ,  S ~ I f  we set AN = SN § and work out the 

5 This situation can only occur if C(2~) = 0; notice that then any point (0, S~ S o < 0, 
is an equilibrium. 
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expression (47) for a sequence of macroscopic states, we find that as N - +  0% 
S+(z) obeys an equation of the form 

d S+(~ ) = LG(x(~)) ) \ A(r) + iA-2v(r) + irb(X('r)), S+(r) (84) 

Equivalently, setting S+(T) = �89 *~(', one gets for the phase of the order 
parameter 

(d/d.d~(-O = a-~(~) + r (85) 

In (84) and (85) we have included the phase 2`-%(r) = ;~-212E + ~S~ 
of the free motion (which is of course of the order 2, -2 in the r time scale). 
In addition to it, there occurs another phase term qb(X), which is due to the 
interaction with the bath. The explicit form of q)(X), which can easily be 
found, is not of particular interest, and it is enough to note the following 
points. 

(i) ~(X) involves not only the functions Cl(t) and Cdt),  but also the 
functions tCl(t) and tQ( t ) .  This is because the calculation of the com- 
mutators in (47) with the help of equal-time commutation relations now 
involves terms like 

[exp(itzSN~ ap+N(t)] = [exp(2ilzt/U) - 1]cr~+N(t) exp(iSN~ 
~_ 2(ilzt/N)~p+u(t) exp(iSN~ N -+ oo 

Hence, for the existence of the infinite-volume limit one needs to assume here 
not only the integrability of Cj(t) but also f ItG(t)l dt < m , j  = 1, 2. 

(ii) ~(X) is real and depends only on the gauge-invariant observables 
A and S ~ 

(iii) q)(Xo) and a;(Xs) are in general different from zero for all 
temperatures. 

For T >/ Tc the complex order parameter tends to zero as ~----> oe. For 
T < T~ we see from (85) that its phase behaves as 

~o(,) ~ cD(Xs)r, .r --->oo (86) 

[remember that v(~) --~ 0, ~- --> oo, for T < T~). 
Therefore, S+(~ ") has asymptotically a circular motion with constant 

angular velocity qb(Xs) on the circle of radius �89 showing that this circle 
is an attracting orbit in the (S x, S r) plane. 

In fact, the three-dimensional differential system undergoes precisely 
a Hopf bifurcation in the (S x, S r) plane: the origin becomes unstable at 
T = T~ and gives rise to the attracting circle of radius �89 One can check 
that the conditions for the Hopf bifurcation theorem are met. (31~ In par- 
ticular the derivative of the eigenvalue 2,~, (74), with respect to/3, 

d2`1 t'2/3c C(0) 
d/3 ~=Bo = 8 coS~/3c,  

does not vanish at T = Tc [if (~(0) > 0]. 
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Extremal equilibrium states of the BCS model can be labeled by the 
phase of S +, according to the breaking of gauge invariance. Suppose that 
we choose a non-gauge-invariant initial state with 

lim pN(SN +) = S + = � 8 9  0 
N'-*~ 

for T < Tc we have asymptotically as r --~ 

S+(~ -) _ �89 s exp{i[~0 + qb(Xs)~r]} ~ 0 

This shows that a non-gauge-invariant initial state is not driven by the 
dissipative semigroup (47) to a steady state, but goes over the set of extremal 
equilibrium states with constant angular velocity (Fig. 3). This feature is 
due to the fact that the interaction with the bath is itself non-gauge-invariant. 
One can check that the phase of the order parameter remains constant in 
time if the interaction is gauge-invariant (like the scattering of Cooper pairs). 
In the latter case, the symmetry breaking is obtained dynamically by the 
choice of non-gauge-invariant initial conditions. 

5. F L U C T U A T I O N S  

5.1. F luctuat ion Observables 

We know that intensive observables in macroscopic states evolve without 
fluctuations in the thermodynamic limit according to the deterministic 
equations (63) (see Section 3.2). In order to exhibit the fluctuations, we must 

treat the dynamics not to the leading order in N, but to the order a/-N. It is 
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indeed a general feature of macroscopic bodies that, with the exception of 
critical points, the mean square deviations of intensive observables are 
O(1/N) as N-+oo.  We are thus led to define the fluctuation observable of 
Sn(g) around the mean value pN(SN(g)) = <SN(g)) by 

~N(g) = ~v/-N[SN(g) -- <SN(g)>] (87) 

Such fluctuation observables are O(1) in states with normal fluctuations. If  
ON is a macroscopic sequence of states at S(g) [definition (14)], we say that 
ON has normal fluctuations if limN~ ~ pN(IIr gg'(gT)) exists for all monomials 
of fluctuation observables ~v'(g,), g, s C~ �9 (For a discussion of states 
with normal fluctuation see Ref. 21 and Appendix A.) 

Since the commutator of fluctuation observables does not vanish as 
N - +  0% the evolution of fluctuations is in general a truly quantum process 
and cannot be described in terms of a classical probability distribution. We 
shall not deal here with this full quantum process, but restrict our attention 
to the subset 2N = (~N, ~N ~ of two mutually commuting observables. In 
this commutative case one gets a classical description in view of the following 
remark. If  the limit of averages of all monomials of/~u and ~N ~ exists, the 
limit exists also for all continuous functions f (2N) with compact support, 
since such functions can be approximated uniformly by polynomials. Hence 

lim PN(f(2"N)) = t3(f) (88) 
N--* r 

defines a bounded linear functional t3 on Co~ By the Riesz theorem, 
yields a measure diS(2"), 2" ~ R2, which is the joint probability measure for 
the fluctuations 2" = (~, ~o) in the thermodynamic limit. 

To study the dynamics of fluctuations around the trajectories, we 
introduce the fluctuation observables at time ~-: 

2N(~) = (5~,(~), ~r 

~N(r) = V'-N(AN - <AN)0, SN~ = V'N(SN ~ - <$9>0 (89) 

where (AN>, = pN,(Au), <SN~ = pm(SN~ Let PN, = (exp GNr)pN evolve 
with the semigroup (47). pN, has normal fluctuations at time r if 

tim ON,[f(2"N(r))] = t~(f) (90) 
N . - + ~  

exists for a l l f e  C~ 
This limit again defines a measure d~,(2") on R 2 which is clearly the 

probability measure for fluctuations around X(r) at time r. The evolution 
of fluctuations still has the semigroup property: 

Let t~,=.,~ denote the distribution of fluctuations at time r2, given the 
initial distribution t3,,. By the definition (90) 

t3~2,~(f) = lim [(exp GNr2)p~j[f(2"N(r2, rl))] 
N ~ c o  
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Here )(N(%, rl) is the fluctuation observable at time % associated with the 
initial state pN,I- Since pN, evolves itself according a semigroup, we obtain 

&,~l = &+~l (91) 

In order to find the evolution of fi, it is therefore sufficient to calculate its 
generator (for a differentiable function f )  

d 
d--~ t3~(f)]~=~ = lim d 

= lim {(G~p~)[f(kN)] 
N ~ c o  

- VrN[(F~N)(alf(2N)) + (F~o)(OJ(2N))]} (92) 

We prove in the next section that if On is a sequence of macroscopic 
states at X with normal fluctuations, the limit (92) exists and is given by 

drfi*(f)l '=~ = P [(DF)(X)f(]. + K(X) a 

where (DF)(X) is the linear part of the field at X and 

K(X) = [ K~(X)  K~so(X) ] 
~Ks%,(X) Ksoso(X)] 

is a 2 x 2 symmetric matrix depending on the point X. 
If  dr = tz~(2) d~ &qo has a differentiable probability density tz~(2), 

(93) together with the semigroup law (91) is equivalent to the linear Fokker- 
Planck equation 

0 _= {_O@.{(DF)[X(r)],} + [ K ( X ( r ) ) ~ ] . ~ } t z ~ ( 2 )  (94) d'-~/~,(2) 

where (DF)[X(T)] and the diffusion matrix K(X(r)) are evaluated here at 
the point X(r) of the trajectory defined by the initial condition X. 

Equation (94) expresses our main result concerning the dynamics of 
fluctuations: in the thermodynamic limit the averages of the fluctuation 
observables follow the linearized equation of motion (63) around the trajec- 
tory X(r) and their probability distribution is Gaussian. 

In fact, (94) is the Fokker-Planck equation associated with the stochastic 
differential equation 

d 2( . )  = (DF)[X(.O]2(~-) + q~(~-) 
dr (95) 
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where ~o(~-) is a Gaussian Markovian (but nonstationary) random force 
defined by 

and 

(~%(,))  = (~oso(,)) = 0 

(~ozx(T~)q~(r2)) = 2KAA(X(~-I))3(r~ - z2) 

(9~(~-l)q~sO(r2)) = 2KAso(X(r~))  a(rl  - r2) (96) 

(gOsO(ra)q~sO(r2)) = 2Ksoso(X(rz))  3(rz - r2) 

However, one should note that a complete proof that the fluctuations 
are given by the stochastic process (95) is not obtainable in the framework 
of the master equation. To prove that the full process is Gaussian and 
Markovian would require in addition to the Fokker-Planck equation (94) 
a knowledge of the set of all multitime correlations (cp(rl)~(r2). . .~o(r,)) .  
Such information is not available from the master equation (47), which 
gives the state only at the single time z. 

5.2, Generator  of the Fokker -P lanck Equation 

This section is devoted to the proof that the limit (92) exists for states 
with normal fluctuations and is the Fokker-Planck generator (93). To 
simplify the presentation it is convenient to use instead of/~N the fluctuation 
observable 

with, as before, 

R~ = SN+SN - = �88 2, 

F ~ ( Y )  = d R / d r  = �89 

R = 1A2 

(97) 

We set 

Y~ = (R~, S~~ Y = (R, S o) 

?N = ( k ~ ,  ~r f" = (k ,  ~o)  (98) 

We shall come back later to the/~ variable by a simple change of variable. 
It is sufficient to evaluate (92) for monomials f(ITN) - k~k(~qN~ z. We 

shall treat explicitly only the case kN k. Once the mechanism is revealed, the 
reader can easily supplement the arguments and the calculations needed for 
the general case. 

As a first step we establish an asymptotic development of (GNp~r)(_RN k) 
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with leading term O(~/N). Recalling the form (47) of  GN, w e  see that it is 
a sum of four terms, the first of them involving 

~. [RN k, a+N(t)]%- (99) 
P 

We obtain for (99) the following asymptotic development written in terms 
of the fluctuation observables: 

E;~ ~, ~;N(t)]~,- 
p 

= V'Nkk}-~B~(t) + k(k - 1)[~-2DN(t) + O(1/V'N) (100) 
with 

1 Bg(t) = ~ [RN, a+N(t)]a, - = -- Su+(t) ~ ~, a~ (101) 
P P 

1 1 ~ aON(t)%OSN_ DN(t) = } ~. Igor, c~+N(t)l%~ - = -~, SN+(t) 
P 

(102) 

Before proving (100) we note that the remarks (i)-(iii) of Section 3.2 apply 
to BN(t) and DN(t). The B~(t) and DN(t) commute with RN and SN ~ and 
can be considered as functions of YN = Y + !~/~/-~, or equivalently, of 
I?~ only. The right-hand side of (100) can therefore be understood as a 
C-function in the functional calculus of ITN. In this sense, O(1/v/_~) means 
a function of the fluctuation observables that is bounded by some polynomial 
(1/~/N) ~kz bk*lkz, lk[gN~ ~. 

The proof of the formula (100) is by induction on k. We start with 
the following commutator identity: 

[k~ +~, ~;N(t)]~,- 
P 

= ~N ~, [~N~, ~,+~(t)]~p- 
P 

+ ~ [ ~ .  ~;N(t)l~,-k~ ~ + ~ [k~. ~;~(t)][kN ~, ~,-] (103) 
P P 

The second term on the right of (103) is simply ~/N _RN~Bz~(t). 
We can work out [/~u~, %- ]  into a multiple commutator expansion. 

Since any commutator brings a factor 1/V'_N, the leading term in this 
expansion is 

k[k~, %-]k~ -~ = (1/v/N)%~167 -~ (104) 
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the rest being also a polynomial in Rzr With (104) we see that the last term 
of (103) is 

2kkw + O ( 1 / ~ )  

Taking this and (100) into account in (103) proves (100) by induction. 
The operator BN(t) which occurs in the first term of (100) is exactly 

the quantity (52) that we had to consider to compute the vector field F in 
Section 3.2. Once we have obtained developments similar to (100) for all 
terms of (47), we can write 

(GNpzC)(kN k) = ~r kpN(k~-IFn N) + k(k - 1)pN(k~-2K~R) + O(I/VN) 

(105) 

The terms O(V~)  add up to form the R component FR N of the field (for 
finite N), and the contributions O(1) give the new contribution KgR. 

In estimating the remainder, we use the fact that it is bounded 
by a polynomial of fluctuation observables. Hence pN(]k~]klgN~ ~) 
[pN(~(~N0)2Z)] 1/2 remains bounded as N -+ oe if pN has normal fluctuations. 

The first term in (105), together with the second term in (92), gives 

kV'N[<k~v-*FS) - <k~-*)<Fnn)]  (106) 

We introduce now the operator F~(YN), which is obtained by substituting 
in the field FR(Y) the operators �89 - + SN-SN +) = Rx -- (I/2N)SN ~ 
and Sz~ ~ in place of the numbers R and S ~ The operator FR(Yx) is a well- 
defined operator in the functional calculus of the commuting observables 
Rn and Su ~ 

It is proved in Appendix C that if the correlation functions of the bath 
C~(t) and C2(t) satisfy an exponential decay condition, the following estimate 
holds: 

Fn N - FR(YN) = O(1/N) (107) 

This allows us to write (106) as 

k~/N[<k}-~FR(YN)) - (/~-*>(FR(YN))] + O(1/V~) (108) 

Using now the relation between intensive observables and fluctuation 
observables 

YN = <YN> + (1/V-N)fN 

and the differentiability of FR(Y) (Lemma 4 of Appendix C), we have a 
limited Taylor expansion 

' q  VN FR(< YN> + ~F~ 
= ~ F~(< YN>) § - ~  (< YN))k~ 

+ a--~ (< YN>)gN~ + o 

(109) 
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Inserting (109) in (108) and taking into account that by definition (/~N) = 
(~N ~ = 0, we find that (108) becomes 

OFR OFR ( 1 ) ea ((YN))k(kN~) +b-~ ((rN))k(k~'-l~CN~ + O (110) 
\ ! 

The treatment of the second term in (105) is similar: We introduce the 
operator KnR(YN) associated with the function Knn(Y) = limN_~ ~ (K~Vn) and 
have the estimate 

K~n - KnR(Yu) = O(1]N) 

The regularity of KRR (obtained by similar arguments as for FR) gives 

KR•( YN) = KnR(( YN)) + O(1/~r (111) 

In the limit N-+ o% (YN) converges to Y and we obtain from (92), (105), 
(110), and (111) 

~FR(T) ,_ ~ _  1,~o, d ~FR(Y) kp(k~) + - ~  ~pt~ o ) 

+ k(k - 1)K..( Y)t~(k ~- 2) (112) 

Equation (112) is precisely (93) written in terms of the variable I 7" and for 
the special choice f ( I? )  = / ~ .  

Finally, we come back to the X variable, noting that 

/~N = �88 e - (AN) e) = {(AN)AN + O(1/~/_N) (113) 

Thus in the thermodynamic limit we can set 

/~ = �89 (114) 

and 

d 
dr ~(/~k)[~=o = lim d 

- d 

= 2 F~(X)(-~)~ ~ , ( ~ ) +  (2 )~  ~r p~(~)l,= o (115) 

Transforming (112) according to (114) and (115) gives now exactly (93) 
with KAA(X) = (4/A2)KRR( Y). 

As an example we give the explicit form of the diffusion coefficient 
KAA(X) of the gap variable A. Using the semiclassical propagator again, we 
find from (102) and the other contributions to KffR 

KzxA(X) t~2C(v)(S~ ~A2 ( v + oJ) 

+ C(~ _ , o ) ~  ( o~-~) 
tz - o~ tanh/3 ~ /> 0 (116) 
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5.3. A s y m p t o t i c  Behavior  of F luctuat ions 

We conclude this section by a brief discussion of the behavior of fluctua- 
tions (we treat only the case where Xo and Xs are the only equilibria). 

The asymptotic behavior of the mean square fluctuations (/~2)~, 
((go)2), and ( ~ o ) ~  differs according to the values of the temperature and 
the initial value X of the trajectory X(r). (Remember that by definition 
<~), = ( ~ r  = 0 . )  

1. We consider first the case where T # To and X belongs to the basin 
of attraction of Xo (for T > To) or Xs (for T < To). 

We can replace asymptotically X(,) by Are (X, = Xo, T > To; or 
X, = Xs, T < To) in (94) and we get 

2--6- ~-@Fs~ (Xo) 

@Fso (X,) + - ~  (Xo)/ 

\ (3XS~162 ] \ Ka~o(Xo) ] 

The eigenvalues of the above matrix are 2A1, 22t2, and ~1 + 2,2, where ;~1 
and ;~2 are the eigenvalues of (DF)(Xo) (for T > To the matrix is diagonal). 
We know that ;~1 and ;~2 have negative real parts (see Section 4.1). Therefore, 
fluctuations are driven exponentially fast to their thermal equilibrium value. 
This is the phenomenon of regression of fluctuations. 

2. If  T < To and the initial value of A is zero, X(~-) tends to the unstable 
equilibrium Xo. In this range of temperature ;~1 = (@F~/@A)(Xo) is positive 
[see Eqs. (74)], and (117) gives rise to an exponential blowup of (/~2)~. This 
amplification of fluctuations characterizes the instability of the axis A = 0. 
One can say heuristically that even small fluctuations suffice to destabilize 
the system and create a tendency for the system to get to the stable ordered 
phase Xs. 

3. If  T = To is critical, then Xo is no longer hyperbolic (although 
asymptotically stable) and we have to expand F•(X) to higher order in A 
to find the rate of approach to equilibrium. In the domain of validity of the 
time-dependent Ginzburg-Landau theory [A ~_ 0, T-~ To, see Eq. (124), 
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Section 6], we have 

d_d_ = - ( 1 1 8 )  
dr 

d 
d--~ </~2>~ = 6dA2(~-)</~2>, + K6zx(Xo) (119) 

Equation (118) gives the asymptotic behavior 

A(,) = O(~-- ~/2) (120) 

This is the typical slowing down that occurs at the critical temperature. 
We see in (116) that KAa(Xo) = KAA(0, --2E/t0 = �89 > 0. Since by 

(120), A2(r) = O(r-~), we deduce from (119) that <~2>, diverges like 0(~-) 
as ~---~ ~ .  This divergence is the dynamical manifestation of the fact (well 
known from the equilibrium theory) that the fluctuations of the order param- 
eter are no longer normally distributed at the critical point. 

6. C O M P A R I S O N  W I T H  P H E N O M E N O L O G I C A L  
D Y N A M I C A L  THEORIES  

Since the dynamics of our open BCS model can be exhibited explicitly 
and without approximations starting from Hamiltonian mechanics (though 
in the weak coupling limit), it is interesting to compare it with the usual 
phenomenological dynamical theories. In the thermodynamics of irreversible 
processes (a2) the time rate of change of the order parameter A is assumed to 
be given by 

d A = _ ~ d  irr ~ r J(f > 0 (121) 

where ~ f  is a kinetic coefficient and r is a suitable thermodynamic poten- 
tial. When r takes the Ginzburg-Landau form, (121) is referred to as 
the time-dependent Ginzburg-Landau theory. (33) In a general situation, 
A = A(q) is space dependent and the right-hand side of (121) has to be 
understood in the sense of functional derivative. Since our BCS model is 
strictly mean field, there is clearly in our case no spatial structure and A 
is the only relevant order parameter. For the sake of comparison, let us 
calculate the Ginzburg-Landau potential r corresponding to the model. 
r is defined as the free energy associated with the effective Hamiltonian 
(35), considered now as a function of A; we have 

1 A2 ~ In 2 cosh tim(A) (122) r = --~ In Tr exp(-flHe,,) = /x -~ - f l  2 
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with co(A) = [(202 + /z2A2] I/2. The 6(A) is of course minimum for A = 0 
or A = A s. 

The dynamics defined by (121) and (122) is therefore 

d d J~tzA ( t* tanh[/3o4A)/2]i (123) 
d--~ A--- -~'~ ~ ( A ) =  - Y  1 -  co(A) l 

If  we investigate the motion of A0-) in the neighborhood of the critical tem- 
perature, we find that A(r) is very small and it makes sense to expand (123) 
in the form 

dA/dr = a([3)A - dA 3 (124) 

where the coefficient d is taken at/~ =/3o. 
We find from (123) 

d4~ { > 0 ,  T < T o  
a(/~) = -~E (t* tanh ]~, - 20  0, T > To 

(125) 
d = - J t ~ t z 3 (  /3dz 1) > 0  

2 cosh 2/L~ 

Equation (124) is the usual simple phenomenological equation describing 
the bifurcation of the order parameter. Equations (123) and (124) should 
be now compared with our differential system (62). 

We remark that in (62) the two variables S O and A evolve in a coupled 
way: the rate of change of A0- ) depends on the instantaneous value of S~ 
Moreover, the vector field is not a gradient system, since it can be easily 
checked that in general (O/OS~ # (~/~A)Fso. There does not exist a 
general thermodynamic potential depending on S o and A that gives rise 
to (62). 

However, we can simplify our system in the neighborhood of the 
critical temperature..If  T is sufficiently close to To, we see in (74) that 
2,1 << A2; this means that S~ is a much more rapidly relaxing variable than 
/'fir). In this case S~ is a "stable mode"  compared to A(r) and could be 
eliminated from the equations by invoking the adiabatic elimination prin- 
ciple (Ref. 19, Chapter 7). We shall make an even cruder approximation by 
assuming that for T ~_ To, S~ has already been driven to its equilibrium 
value and therefore remains constant in the course of time. When we set 
S~ = -2E/~ in our equation, we get 

co(A) + 2e co(A) - 2,] d d a = - (~(co(A)) + C( -oJ (a ) )  $(a)  

(126) 

Equation (126) is not exactly identical with (123), but remembering that it 
holds only for T ~ To and small A, we can expand it around A = 0 in the 
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same manner as for (124). Noticing that oJ (A)-  2E _~ �89 2, only the 
first term of the brackets in (126) contributes and we find that this expansion 
coincides precisely up to A 3 with (124), provided that we identify the kinetic 
coefficient W with 2~2(2e)/~. 

Thus, we conclude that our equations reduce to the time dependent 
Ginzburg-Landau form (124) for T close to T~ and small A. In other ranges 
of temperatures, especially if the relaxation times ,~i -~ and / ~  are of the 
same order of magnitude and if initial values are far from equilibrium, one 
has to keep the full differential system (62). 

A P P E N D I X  A 

In this appendix we show that the set of states of the BCS model with 
uncorrelated p modes (i.e., independent spin states) are macroscopic and 
have normal fluctuations. This is a simple noncommutative version of the 
central limit theorem (in this context see Ref. 34). Consider the product 
states 

PN = | Pp 
pef~ 

with single spin states 

(511 + S~ S+(p) ] 
(A1) 

PP = S - ( p )  511 - S~ 

The S~(p) are given functions in C~ [S~(p)[ ~< 1, We first prove that 
these states are macroscopic; we have 

ON S~t(gi) -= - ~  gl(Pl)'"g,~(P,~)(a~,~"" cr'~) 

We separate the above sum into two parts: a sum on Pl ,..., Pn with Pi two by 
two distinct, and the remainder. In the remainder each sum contains at most 
N "-1 terms. Thus, according to the boundedness of the summand the re- 
mainder is 0(1/N) and vanishes in the thermodynamic limit. The nonvanishing 
term is 

Pl , . . . , ]On I=I i = 1  
Pt distinct 

which converges to the monomial IIT'=I S~(g~) as N--+ oo. 
In order to show that PN has normal fluctuation, we calculate the limits 

of averages of monomials of fluctuation observables. 

1 
<S~,~(g~)...Sf~-(g~)} =~-fFfi ~ g~(p~). . .g,(p,)(rgl. . .rg"} (A2) 

Pl . . . . .  Pn 

with %~ = %~ - (%~> = %~ - S['p>; we have (rp~> = O. 
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Let .~(n, j )  = IO~ = z r{~ be a par t i t ion of  {1, 2 , . . ,  n} into j subsets i f ,  ~. 
Each part i t ion determines a subset (ql,..., qj)~ of  the n indices Pl, . . . ,  p~ by 
identifying the Pk with k elY ~, ~ -- 1, 2,... ,j.  We can decompose  the sum 
(A2) into 

= ~ ~ ~ (A3) 
Pl . . . . .  Pn 1 = 1  , 9 ( n , ] )  (q l  . . . . .  qt) o~' 

qt d i s t i n c t  

where the second sum is on all part i t ions ~ ( n , j )  and the third sum runs for 
each part i t ion on the associated set o f  indices q~ e 12,..., qj e f l ,  ql r q2 # 
�9 .. # qj. We distinguish the following cases in (A3): 

(a) j < n/2. The third sum in (A3) has N j bounded  terms. Their  con- 
t r ibut ion to (A2) is O(N j-'~12) and thus vanishes as N--> oo. 

(b) j > n/2. N o w  ~ ( n , j )  has at least a one-element subset. Then 
<~-~ ... r ~ \  has certainly a factor  <~-~> which is zero. P l  Pn / 

And if n is even: 

(c) j = n/2 and ~(n ,  n/2) has a one-element subset. These terms are 
zero as in (b). 

(d) j = n/2 and ~(n ,  n/2) is a part i t ion of {1, 2 ..... n} in n/2 pairs. 

The sum of  all such contr ibut ions can be written, up to terms O(1/N), 
a s  

~=i /~ p 

n/2 

= ~ ~[  (,~,"~"-'~(gD(2k_,))~"~2~'(g(o2~)) (A4) 
p k=l 

The sum runs on all parti t ions,  of  {1, 2,..., n} in pairs,  i.e., p is a permuta t ion  
of  1, 2 ..... n such that  p(2k - 1) < p(2k) and p(2k - 1) < p(2k + I), 

I f  n is odd, cases (c) and (d) do not  occur, and (A2) converges to zero as 
N---> oo. I f  n is even, the only nonvanishing contribution,  given by (A4), 
involves correlations (~l(gl)$~,2(g2)> of  order two, which converge as 
N---> oo. For  instance, 

lim (S~176 = lim 1 ~ g~(p)g2(p)([%o - SO(p)]2) 
N-~oo N~ao N p 

= -~1 d3Pgi(P)g2(p)[l - S~ 

We see that  for n even the correlat ion of  order n, (A2), converges to the sum 
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of  the (n - 2)!! products  o f  correlations of  order  two. Except for  the non- 
commutat iv i ty  o f  fluctuation observables, this structure characterizes 
Gaussian averages. 

APPENDIX B. POSITIVITY OF Lo(x)AND L~(x) 

We first show the following facts: 

(a) I f  T >1 To, V(X) has the single stationary point  X0 (which is a 
local min imum when T > T~). 

(b) I f  T < To, V(X) has two stat ionary points Xo and Xz; Xo is a 
saddle point,  whereas Xs is a local minimum. 

The partial derivatives o f  V(X) are 

~V(X) 1 l~A t~ + ~, 
~A -- 2fl~A + ~ l n - -  / ~ - - r  

(m) 
S o 

~V(X) = fie + In t~ + oJ 
O S o t~ ~-~ t~ - --d 

Notice that  these derivatives are continuous at the origin, with 
(~V/OA)[x=o = 0 and (~V/OS~ = fie. Therefore V(X) is C 1 in the 
open disk IX[ < 1. 

Recalling that  �89 ln[(1 + Y)/(1 - Y)] = argth Y, one verifies immedi- 
ately that  Xo (T/> To) and X0 and Xs (T < To) are zeros of  (B1). Conversely, 
(O/OA)V(X) vanishes if  oJ = 0, or A = 0 (with S o # 0), or oJ = oJ s. We 
have that  oJ = 0 is excluded. 6 In  the two other cases, (~/OS~ vanishes 
if S o = - t a n h / %  or S o = -2E/~,  giving Xo and Xs. 

In order  to establish that  Xo and Xs are local minima of  V(X) in the 
appropr ia te  range o f  temperature,  we have to show that the second-order 
partial derivative matrix is positive definite. 

We find 

e 2 v  i 
fXo = - -  

8 2 V xo O(S~ ~ 

9 2 V Xo = 0 OA ~S ~ 

tanh fie 

1 
> 0  

1 -- tanh 2 fie 

Since (8 2 V/0A2)[xo 
T > To, and a saddle point  for T < T~. 

8 Because (~/OS ~ V(X) does not vanish at the origin. 

(B2)  

has the sign o f  tic - fl, Xo is a local min imum of  V for 
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We similarly have 

El  
a A  ~ [xs 

c~2V 
~"~2 xs 

O2V I OA ~S ~ x s 

where we have set 

7' = - -  _ ~os2 COs 2 /z 2 

The sign of 7 is found by the following remark: 

7' Ws 2 ~-~ (~ argth ~ - - ~ )  ~= 

By definition of O~s, we know that the function 

1 argth ~o o~ 

-= 1~2 As27 

: 4E27 + fl 

= -- 2/ZeAsy 

CO S 

(B3) 

(B4) 

(BS) 

is zero at oJ = OJs. One easily checks that, with fl > tic, (B5) is negative for 
0 < o~ < o~ s and positive for o~ > OJs, thus implying 7 >/ 0; moreover, one 
can exclude V = 0, since the derivative of (B5) has only one positive root, 
which has to be less than COs because (B5) is zero at the origin. Therefore 
7 > 0 for T < To. 

Thus the diagonal elements of the partial derivative matrix and its 
determinant/3t~ a 2Xs27/2 are positive, proving (b). 

Lemma 3 is proved if we know that Xo (for T/> To) and Xs (for T < T~) 
are absolute minima of V(X)  in 9 .  Since V(X)  is continuous on the closed 
disk IXl l, v(x) reaches its absolute minimum either inside the disk or 
on its boundary [X[ = 1. If  V(X)  takes its minimum inside the disk, this 
must be at .I"0 for T >i To, by (a), or at Xs for T < Tc, by (b). Therefore, 
the proof is complete if we show 

g(x) l lx l=l  > V(Xo) = - l n  2 coshflE, T 1> Tc 

(B6) R,, 

In fact V(X)]lxl=~ = ticS ~  l / L [ 1 -  (S~ 2] is a function of the single 
variable S ~ which takes its minimum value -/3(c2]/~ + �88 at S o = -2~/t~. 
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Therefore, to have (B6) it is enough to show 

h(c) = In 2 cosh tic tic2 fl/z > 0, T/> T~ (B7) 
tz 4 

g(A)[A=A~ = In 2 cosh + As 2 fltZAs 2 fl~2 fit ~ 
- 4 ~ 4 > 0 ,  

T < 1"~ (B8) 

For a fixed/~ ~< tic, consider the function h(E) of c defined by (BT) in the 
interval % ~< c ~< t~/2 (with tanh rico = 2%//-~). Since (d/dc)h(c) = 
f l ( t anhf lE-  2c//~)~< 0 in this interval, h(E) is nonincreasing. Therefore, 
h(c) >i h(/~/2) = ln(1 + e -~u) > 0. 

For a fixed fl > tic, consider the function g(A) of  A defined by (B8) in 
the interval A s ~< A ~< A1. The value Az = [1 -- (2c/t~)2] 1/2 is the largest 
possible equilibrium value of A. The function g(A) is decreasing in this 
interval since 

d g ( A  ) = 2[(2~/tz)2 + A2] ~/2 [(_~)2 A2]~/2) 

for A >1 A s. Henceg(As) /> g(Ai) = In 2 cosh(/3/z/2) - 1/3/z = ln(1 + e -B") > 0. 

A P P E N D I X  C 

We study in more detail the operator FR n and its relation with the 
operator F~(YN). 

L e m m a  4. I f f o  [Cj(t)]t ~ dt < 0% F ( X )  belongs to C ~. 

Proof. We see in (32) and (33) that a~(t) and b~(t) (a = +,  - ,  0) are 
C = if ~o ~ 0. They are in fact also regular at oJ = 0. For  instance, using (34) 
and the fact that a~ is real, we can write 

a~ = ~ (cosrwt  - 1)u~ ~ + 1 

This form of a~ shows clearly that there is no singularity at o~ = 0. Hence, 
according to (56) and (57), the integrand of F ( X )  is a C ~ function of X. 
[Alternatively, one can deduce from the Dyson series of the classical propa- 
gator that (56) and (57) are entire functions of R and S~ Since the time 
dependence appears in phase factors, the lemma follows. [ ]  
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In order to estimate the difference between Fn N and FR(Y~), it is useful 
to introduce an approximate operator solution ~pu(t) of the Heisenberg 
equation of motion (10). The solution ~p~(t) is defined by the same for- 
mulas (31)-(33) as the semiclassical solution, where we replace S ~ by SN ~ 
(a = + ,  --, 0) and oJ by 

o~N = tz[(SN~ 2 + 2(SN+SN - + SN-SN+)] t/2 (C1) 

In this definition, we make an arbitrary choice of the order of the non- 
commuting factors (notice, however, that o~N, being proportional to the 
length of the total spin angular momentum, commutes with the SN"), We 
denote by/VRN the operator that is analogous to FR N but calculated with the 
help of the approximate solution gpN(t). 

I.emma 5. If  the bath correlation functions C~(t) and C2(t) are O(e-~) 
(with 7' determined below), then 

FR N -- Fn N = O(1/N)  (C2) 

Proof. It is easy to check that ~pN(t) is a solution of (10) up to a term 
of order t/N, that is 

II(d/dt) vN(t) - iFN(t)g,N(t)ll <~ (Cst ) t /N (C3) 

Indeed, writing down explicitly the left-hand side of (C3), one sees that it 
is identically zero after the permutation of a certain (finite) number of 
factors SN ~ (~ = +,  --, 0) and exp(iSN~ All the involved commutators 
are O(1/N)  or O(t /N)  in operator norm. 

The difference between %N(t) and the approximate solution satisfies the 
differential equation 

d~ [a,N(t) - ~pN(t)] = iru(t)~,N(t)  - ~ ~N( t )  

+ iPz~(t)[%u(t) - ~N(t)] 

Since 1[ FN(t)l[ ~< 7'o is bounded uniformly with respect to N and t, this leads 
immediately to the estimate 

]]%N(t) - ~N(t)t] ~< Cst(t2/U)e yot (C4) 

By the very definition of FR N, (C4) implies (C2) if the hypothesis in the lemma 
holds true with some 7' > 7'0. �9 

In order to compare now _PR N with the classical function FR(Y), we 
consider the operator defined in the functional calculus of the commuting 
observables R~ and SN ~ obtained by replacing S o by Su ~ and oJ by ~oN, (C1), 
in FR(Y). We denote it by FR(YN). 
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m 

One sees by inspect ion  that  the in tegrands  o f  Fn N and  FR(Y~) differ 

aga in  by the o rde r  o f  a finite number  o f  factors  whose commuta to r s  are  

O(1/N)  or O(t /N) .  Thus  

Fn N - FR(YN) = O(1/U)  (C5) 

The  conjunc t ion  o f  (C2) and  (C5) gives the  des i red  result  (107). 

Remark .  F S ,  f i T ,  and  FR(Yu) can be cons idered  as funct ions in the 
func t iona l  calculus o f  RN and  SN ~ Express ions  (107), (C2), and  (C5) have 
to be unde r s tood  as pointwise  es t imates  o f  these functions.  
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